
2784 J. Med. Chem. 1995, 38, 2784-2788 

Analysis of a 29 Full Factorial Chemical Library 
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Robotic synthesis is making possible the synthesis of large, systematically designed sets of 
compounds. We analyze a 512-compound set tha t is a 29 full factorial experimental design 
using a recursive partitioning algorithm, FIRM, and a high-dimension visualization tool, 
TempleMW. These techniques are used to quickly and easily identify the main trends in the 
data set and also identify unusual observations. We show that analytical and visualization 
methods can be used synergistically to analyze a large, complex, high-dimensional data set. 
We also show that a fractional factorial design of 128 compounds would give essentially the 
same information. 
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We are at a pivotal point in the history of compound 
synthesis, and we have an opportunity to use chemical 
series design and analysis methods to obtain more 
complete information and understanding of important 
features of potential drugs. Robotic methods can be 
used to synthesize a large series of analogs at an 
economical cost. The chemical series can be planned 
on the basis of computational chemistry and statistical 
methods. The resulting systematic chemical series can 
be analyzed using powerful statistical methods to find 
general trends in the data set and isolate specific effects 
that may be the result of interactions among the 
molecular parts. But just as the opportunities are great, 
the problems are difficult. Which of the very many 
possible analogs should be made? What statistical 
experimental design methods are appropriate? How can 
compounds or parts of compounds be numerically char­
acterized? We focus on the question of how large, 
complex data sets can be summarized and analyzed to 
extract important information. We do this through the 
analysis of an example. 

Substance P is a neuropeptide that has been studied 
since 1970. A complete data set of 512 analogs that are 
the result of D/L-amino acid changes at nine positions 
in an 11-amino acid polypeptide, 29 = 512, is given in 
the literature.1 A diagram of the 11-amino acid polypep­
tide is given in Figure 1. 

The general analysis problems presented by this data 
set are how to quickly determine general trends and 
how to isolate any peculiar results. These general 
problems lead to the following particular questions: 
Which are the positions where D/L changes affect 
potency? Are there combinations of D/L changes that 
are unusual? and Which polypeptides are not respond­
ing as the general trends would predict? We will use 
two methods that are designed for the examination of 
large, complex data sets. The first method goes by the 
name FIRM for formal inference-based recursive model­
ing.23 At each stage this method does two things. First, 
categories that are not significantly different from one 
another are combined. (In the case of the substance P 
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Figure 1. Amino acid sequence of substance P polypeptide. 
Residues in italics were not varied. Position number is given 
along the backbone. 

data, each variable, position, has only two categories, 
so this step is unnecessary.) Second, FIRM uses sta­
tistical hypothesis testing to identify the single most 
important variable for dividing the data set into homo­
geneous parts. The procedure is recursive and stops 
when each subgrouping of the data can no longer be 
subdivided. The internal computations are complex, but 
the process is easily followed by examination of the 
analysis of the substance P data set. The second method 
is visualization, and we use TempleMW4 to display all 
of the data in a way that makes general effects obvious 
and allows the detailed examination of individual 
observations in an informative context. 

In this paper we work systematically through an 
analytical and a visual examination of the substance P 
data. There are three points that we hope to make. 
First, a systematic statistical experimental design is 
amenable to simple analysis; this well-known charac­
teristic of statistical experimental designs is very im­
portant for large data sets. Second, analytical methods 
can be used not only to determine general features of 
the data but also to guide a visual analysis. Finally, 
visual methods can be used to examine detailed features 
of the data, e.g., detection of unusual data values and 
effects due to combinations of experimental factors. The 
analysis process typically involves interplay between 
analytical and visual methods, but we will present a 
numerical analysis first followed by a visual analysis. 
We also examine the question of whether a smaller 
design could be used to understand the effect of D/L 
changes. 

Statistical Methods 
In this experiment there are two possible forms, D and L, of 

an amino acid at each of nine positions, so there are a total of 
29 = 512 distinct chemical entities. This experiment is in the 
form of a classical statistical experimental design called a full 
factorial design. The fact that all 512 possibilities are included 
in the design means that it is a full factorial design. Full 
factorial designs are well studied and have many useful 
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properties.5 We remind the reader of two advantages of full 
factorial designs. The first advantage is called "hidden 
replication". One way to detect small effects is to use a large 
number of replications, since with a large number of replica­
tions the standard error of a mean decreases with the square 
root of the number of replicates. In a 2" factorial experiment, 
one-half of the observations are at one level of a variable and 
the other half are at the other. In this experiment, consider 
position 1, 256 polypeptides have a D-amino acid at this 
position and the other 256 polypeptides have an L-amino acid 
at this position. So there is the potential to detect very small 
effects of changing from D to L at this position. This same 
argument applies to the other eight positions. It is as if 512 
replications were committed to each of the nine questions. If 
individual experiments had been run to examine each of the 
positions, then 9 x 512 = 4608 observations would be neces­
sary. The full factorial gets the same statistical power with 
only 512 observations, hence "hidden replication". 

It is straightforward to estimate the average effect of a part 
of a molecule on its biological activity.6 Unfortunately, the 
effect of a part of a molecule usually depends upon the other 
parts that make up the molecule. Parts of molecules interact. 
The second advantage of factorial experiments is that they can 
detect the "interaction" of factors. If the effect of changing 
from D to L changes depending upon what form of amino acid 
is at another position, the two positions are said to interact. 
In extreme cases of interaction, the optimum form of an amino 
acid at one position will change depending upon what is at 
one or more other positions. If there is interaction and each 
position is studied and optimized separately, then there is a 
risk that a suboptimal solution will be found. High-order 
interactions are interactions of many factors. Full factorial 
designs can be used to detect high-order interactions. 

The detection of high-order interactions is not easy, but 
equally difficult is explaining them clearly to individuals not 
trained in the nuances of statistics. Specialized statistical 
techniques have been developed to automatically find interac­
tions37'8 and graphically display the findings. FIRM2 is a 
program for the automatic detection of interactions, and it 
presents the results of its findings in a tree diagram that 
contains a wealth of information in a form that is easy to 
comprehend. The method is recursive and operates in the 
following way. A set of observations at a node is examined, 
the variable that can best divide the observations into two or 
more homogeneous sets is found, and the data in the node are 
divided into daughter nodes. This process is most easily 
followed by examination of the results of an analysis. The 
analysis of the substance P data will be given later. 

With large, complex data sets, it is very useful to graph the 
data in various ways. The point is to take advantage of our 
visual ability to discover patterns in the data. The visual 
search is for general effects, specific combinations of variables 
that act synergistically, and to find unusual observations, sta­
tistical outliers, that merit additional scrutiny. We use a soft­
ware package, TempleMW, to visually examine this data set. 

Exper imenta l Data. Natural amino acids, except glycine, 
can be in mirror image forms, named dextro (D) and levo (L). 
The L-form is the natural form. The D/L-configuration and 
potency of the 512 polypeptides are given in Table 1 of Wang 
et al.1 All peptides were tested at a single concentration of 
500 nM, and percent inhibition was determined; assay results 
were between 0 and 100, with larger values better. Careful 
examination of the original data table revealed that there were 
two pairs of duplicate polypeptides, ID numbers 102/236 and 
229/371. Correspondence with Dr. Wang resulted in the 
correction of two typographical errors: 

Table 1. Example Peptides and Potencies from Table 1 
Reference V 

no. peptide 9 

of 

original 
corrected 
original 
corrected 

no. 

236 
236 
229 
229 

peptide 
R P k P q Q f F G L M 
R P k P q Q f F G l M 
R P k p Q Q f f G l M 
R P k p Q Q f f G L M 

potency 
6 
6 

16 
16 

1 
23 
45 
67 
89 

111 
133 
165 
197 
229 
261 
293 
325 
357 
389 
421 
453 
485 

RPKPQQFFGLM 
R p K P Q Q f F G L M 
R P K P Q Q f F G 1 M 
r P K P q Q F f GLM 
R p K P q Q F F G l M 
R P K p q q F F G L M 
r p k P Q q F F G L M 
r P k P Q Q f FG1 M 
R p k P Q q F f GLM 
R P k p Q Q f f Gl M 
r p k p Q Q F F G l M 
r P k p q Q f FGLM 
r P K P q Q f f Gl M 
R p K P q q f f G L M 
r p k p Q q F F G l M 
r P k p q Q f f GLM 
R p k P Q q f f Gl M 
r p K p q Q f f Gl M 

99 
91 

0 
73 

8 
74 
68 

0 
19 
16 
59 
42 

2 
9 

27 
13 

7 
0 

The 11 amino acids of a peptide are given using the single-
letter amino acid codes; L-isomers are given in capital letters, 

" Lower case letters indicate the non-natural D-isomers. Note 
that the 9th and 11th amino acids were fixed in the design. 

and D-isomers are given in lower case letters. We display a 
few records in Table 1 to emphasize the inherent difficulty of 
determining general conclusions and unusual data values 
without the aid of statistical analysis and visualization. 

Supporting information for this paper is available. The 512-
observation experiment can be divided into four V4 replicates 
(reps); each rep contains enough information to determine the 
main features that are related to activity; the methods to 
construct the lU reps are given. Unusual observations can lead 
to a misleading analysis; a FIRM analysis is given for each of 
the V4 reps. For one of the reps, the analysis is repeated with 
outliers removed. 

N u m e r i c a l A n a l y s i s U s i n g FIRM 

The initial FIRM analysis is given in Figure 2a. Firs t 
examine the legend. There is a box, and in the box there 
are statist ics describing the observations in the node. 
These summary statist ics include the number of obser­
vations, t he mean, the s t andard deviation of the indi­
vidual observations, and the s tandard error of the mean. 
Each box is numbered with a node number . J u s t above 
each box the levels of the split variable t h a t are 
combined to determine the node are given. And on the 
line t h a t gives rise to the split, the name of the split 
variable is given along with the p-value for the statist i­
cal significance of the split. FIRM reports the p-value 
as a percent, so a p-value of 0.05 will be reported as 
5.0%. With this description of a node, we can now work 
through the FIRM analysis. 

S ta r t a t node 1. There are 512 observations, and the 
mean value for these observations is 27.623. The 
s t andard deviation is 28.425. Keep in mind t h a t the 
observations a re percents and can range from 0% to 
100%. With the s t andard deviation about equal to the 
mean, this da ta set has a large amount of variat ion. 
Some of the variat ion is variabili ty in the assay, and 
some is variabili ty induced by differences in the D- and 
L-forms of the amino acids. The FIRM analysis will 
a t t empt to take apar t the variabil i ty in node 1 and 
assign it to variat ions in the positions. As we go down 
the tree, we should expect to see large differences in 
the node means and the s t andard deviations within a 
node decrease. At the te rminal nodes we expect the 
s t andard deviation within a node to be similar to the 
assay variability. Wang et al.1 s ta te t ha t the variat ion 
between duplicate assays is about 5%. 
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Figure 2. (a) FIRM analysis tree diagram of full factorial, (b) FIRM analysis tree diagram of full factorial, outliers removed. 

FIRM finds that position 9 is the most influential 
position on potency. The p-value of (2.75 x 10~23)% is 
highly significant so we can be sure that D/L at position 
9 is a very important determinant of potency. The mean 
of node 2, P9 = D, is 15.215, and the mean of node 3, 
P9 = L, is 40.031. The standard deviation is decreased 
in node 2 but has not increased in node 3. 

Let us follow the high-potency part of the tree next. 
Node 3 is split into nodes 6 and 7 based upon position 
8. Again, the D-form is less potent, mean = 22.453, and 
the L-form is more potent, mean = 57.609. The stan­
dard deviation is smaller in node 6 but has not de­
creased in node 7. Notice that position 8 was also used 
to split node 2. The FIRM algorithm examined all 
positions for the split of nodes 2 and 3 and did not have 
to choose the same variable. Notice also that the 
differences in the means for nodes 4 and 5 and nodes 6 
and 7 are quite different from one another: 

node 5 - node 4 = 19.273 - 11.156 = 8.117 

node 7 - node 6 = 57.609 - 22.453 = 35.156 

So the size of the effect induced by changing from D to 
L at position 8 changes as a function of what is at 
position 9. From Figure 1 we see that these positions 
are beside each other, so it is not surprising that an 
interaction might occur. 

We see that FIRM did not split node 4. Nodes 5-7 
were each split using position 7. At this level we see a 
rather consistent decrease in the standard deviation at 
each node relative to the standard deviation at node 1. 
You can trace down each branch of the tree examining 
means, standard deviations, and differences between 
the means for pairs of nodes. 

Note that at each split the sample size in the 
descendant nodes decreases. Because we are analyzing 
a factorial design, equal numbers of observations split 
into the descendant nodes. Because the number of 
observations gets smaller as FIRM proceeds with its 
analysis, the statistical power is expected to decrease. 
The variability of a node is expected to decrease as we 
go down the dendrogram, and this decrease in vari­
ability will increase statistical power. But the decrease 
in sample size is typically more rapid than the decrease 
in variability so, in general, the statistical power 
decreases as we go down the dendrogram. Ultimately 
FIRM will be unable to split nodes, and the process 
stops. 

If interest is in high-potency polypeptides, then Figure 
2a can be used to give a simple decision rule: Positions 
9—6 should be set to L; positions 4 and 5 can be 
important; for positions 1—3, the differences between D 
and L are relatively unimportant. 

Two additional comments. First, the potencies were 
determined at a single dose, are percents, and are 
limited to be between 0% and 100%. So once the 
potency achieves 100%, the full beneficial effect due to 
changes at the other positions may not be apparent. 
Second, it is of interest to see how the variability of the 
observations changes across the terminal nodes; there 
may be outliers in the data set that have not been 
identified in the splitting process. We will come back 
to that question. 

Graphical Analysis Using TempleMW 

There are literally millions of ways that high-dimen­
sion data may be graphed; an important question is 
which views are likely to be informative. The FIRM 
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Figure 3. Multidimensional diagram. Within each cell, 
potency versus Xio, an index of positions 1-3. Rows and 
columns index positions 9—4. 

analysis indicates that positions 9—4 are important, so 
we should graph results with respect to those variables. 
Positions 1-3 do not appear to be important, so varia­
tion induced by those variables might be considered 
random. The graphical display of the data should allow 
examination of the effect of positions 9 -4 and an 
assessment of the randomness of positions 1—3. To that 
end, we created nine variables, Xi—X9, that take the 
values 0/1 depending upon whether the amino acid at 
positions 1—9 is D and L. Next we created a new 
variable, Xio, that takes the values 1—8 depending upon 
the values of Xi—X3 as given in the following table: 

Xio X2 X3 

1 
2 
3 
4 
5 
6 
7 
8 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

X1-X10 will be used in a complex graph which we will 
now explain. Examine Figure 3. Each small box shows 
a vertical bar graph of potency versus Xio. As Xio 
ranges from 1 to 8, the potency is thought to be random, 
so we expect to see no discernible pattern within each 
box. The rows and columns of boxes are indexed by 
variables X9-X4 is a nested fashion. FIRM indicated 
that position 9, X9, was most important, and X9 is 
displayed along the bottom of Figure 3. The non-natural 
D-amino acids are in columns 1—4, and the natural 
L-amino acids are in columns 4—8. The bars are 
generally taller in columns 5—8, visually confirming the 
FIRM analysis and indicating higher potency for the 
natural amino acid in position 9. Rows 1—4 are associ­
ated with Xs = 1, the natural amino acid in position 8. 
Rows 5—8 correspond to the non-natural amino acid at 
position 8. Again, there is visual confirmation of the 
FIRM analysis; the most potent polypeptides are pre­
dominantly in the first four rows. Variables X7 and X5 

are nested within X9 and index the columns. Variables 
X6 and X4 are nested within Xs and index the rows. The 
general effects of variables X4-X9 can be examined by 
comparing the heights of the bars in the rows and 
columns. 

Figure 3 also facilitates the examination of fine detail 
of the data set. For example, look at the next to the 
last small box in row 2. All of the bars are high except 
for the 5th one, which is essentially 0. Something 
appears to be amiss. Either the compound was mis-
synthesized, the assay is incorrect for some reason, or 
there is some very unusual effect going on. In any case, 
this result merits examination by the experimenters. 
There are other unusually low potencies; see row 1 
columns 3-5 and 7; see row 2 column 6. There appears 
to be an unusually large potency in row 7 column 6. The 
power of this display is that general effects can be 
observed, and with the figure arranged by the general 
effects, it is quick and easy to find unusual observations 
in the data set. 

FIRM Analysis with Outliers Removed 

Figure 3 indicates the presence of several observa­
tions that appear very inconsistent with the rest of the 
data. Five observations 

ID1 

56 
183 
184 
187 
188 

Xi 

0 
0 
0 
1 
1 

x2 
1 
1 
1 
0 
0 

X3 

0 
1 
1 
0 
0 

X4 

1 
1 
1 
0 
0 

X5 

0 
1 
1 
0 
1 

X« 

1 
0 
0 
1 
0 

x7 
1 
0 
0 
1 
1 

Xs 

1 
0 
1 
1 
1 

x9 
1 
1 
0 
1 
1 

Y 

64 
62 
51 

0 
0 

result 

too low 
too high 
too high 
too low 
too low 

were removed, and the FIRM analysis was rerun (see 
Figure 2b). There were several changes relative to 
Figure 2a. The mean in node 25, Figure 2b, increased 
to 97.5 from 93.4 in node 21, Figure 2a. The standard 
deviation also decreased dramatically, from 18.2 to 2.5. 
In Figure 2a, node 2 was split by position 8. With the 
outliers removed, this node was split by position 7. Also 
in Figure 2b, node 4 was split by position 2 and node 8 
by position 3, and for each of these two splits the non-
natural amino acid was higher in potency. The p-values 
for these splits were 4.0% and 1.4%, respectively, so the 
splits might be type I errors, the result of chance. 

Is a Smaller Design Possible? 
It is interesting to consider if a smaller experiment 

could have determined the general trends discovered in 
this large experiment. With results for all 29 = 512 
observations, it is possible to select out four "V4 rep" 
fractional factorial designs, each having 2(9_2) = 128 
observations. (The method of construction of a V4 rep 
design is given in the supporting information.) In each 
V4 rep, it is possible to estimate all main effects and 
two-way interactions. 

Each of four V4 reps was selected, and a FIRM 
analysis was run. (The FIRM dendrograms are avail­
able in the supporting information.) For each lU rep, 
position 9 was found to be most important. Positions 7 
and 8 form the next level splits. The remaining splits 
usually involve positions 6 and 4. Each dendogram is 
somewhat different in the order of positions that are 
identified, but in general the same positions are deter­
mined to be important as were found in the analysis of 
the complete data set. So a much smaller experiment 
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could have been used to detect the general trends 
induced by changing L- to D-isomers. It is interesting 
to note that high-order interactions are used to divide 
the 512 observations into the four lU reps, and for this 
to be sensible, it is assumed that these interactions are 
negligible. It appears from the full analysis that high-
order interactions are present, so the fractional factorial, 
though informative, could give erroneous results. In 
this case, positions 9 -6 were all identified as important 
in each FIRM analysis even though the relative impor­
tance of the positions changed with each lU rep. 

Discussion 
FIRM and TempleMW clearly pick out the important 

positions where D/L-substitutions affect the potency of 
the substance P polypeptide. Positions 9 -6 are very 
important; positions 5 and 4 are only important when 
potency is low (any of positions 9 -6 are D). The FIRM 
display is particularly effective in allowing quantitative 
comparisons over a complex data set. Once the graphi­
cal display is set up on the basis of the FIRM analysis, 
it displays the general effects and allows the examina­
tion of fine details of the data set. This examination of 
fine detail is very important as it greatly facilitates 
finding unusual data values, outliers. These outliers 
are important for two reasons. Incorrect values can 
corrupt analysis, so they need to be identified and 
removed. It is often essential to recompute the analysis 
after outliers are removed. On the other hand, the 
outliers may not be incorrect; correct but unusual data 
values often are the starting point for discovery. In the 
case of the substance P data set, one of the goals of the 
research was to identify peptides that were potent but 
had a high proportion of D-amino acids. D-Amino acids 
are less likely to be degraded by the body and hence 
are more likely to be better starting points for drug 
development. It is clear from a cursory examination of 
the raw data that high-potency polypeptides can be 
made by using natural L-amino acids. Both the numer­
ical analysis and the examination of outliers in this data 
set point to polypeptides that are possible candidates 
for high-potency/high D-containing peptides. The pep­
tide with L in positions 7—9 and D in positions 1—6 had 
a potency of 86%. The peptide with L in positions 6 -9 
and D in positions 1—5 had a potency of 96%. These 
peptides are potential starting points for further devel­
opment. 

As complex as this data set is, see Table 1, it is still 
very simple in many respects. Each variable takes only 
two values; positions are either L or D. All possible 
combinations of I7D are in the data set, so it is possible 
to examine all possible interactions. If there were more 
chemical components at each position and the compo­
nents were described with many numerical descriptors, 
then the analysis problem would be more difficult (and 
realistic). The problem would be much more difficult 
(impossible?) if the set of compounds was some sort of 
catch-as-catch-can collection. It remains to be seen how 
this general approach, find the important variables with 
FIRM and then use the results of that analysis to direct 
interesting views of the data with TempleMW, would 
work in more complex situations. 

Once the layout of the TempleMW display is under­
stood, finding unusual values appears and is very 
simple. This simplicity is deceptive. Detecting outliers 
in complex multivariate data sets can be very difficult. 
The presence of multiple outliers can greatly confuse 
standard analysis. Because of the data-splitting nature 
of FIRM, outliers are only in their own branch of the 
tree. For that reason, a FIRM analysis can be some­
what less confused by outliers. Outlier analysis typi­
cally proceeds in two steps. First, the general features 
of the data are modeled and subtracted out. The 
resulting "residuals" are then compared to some mea­
sure of variability. Multiple outliers can cause the 
general features of the data to be poorly modeled. Also, 
the unbiased measurement of variability is difficult with 
single or multiple outliers. Analysis in the presence of 
outliers is typically rather ad hoc and usually iterative. 
The data are modeled and residuals computed. The 
presumed outliers are removed, and the analysis is 
repeated. 

The binding of these polypeptides is very nonadditive. 
For example, the effect of the D/L change at position 8 
is highly dependent on position 9. The analysis method 
should be effective in the presence of interactions. The 
FIRM methodology was designed to detect interactions. 
Often the binding of compounds to receptors is nonad­
ditive, so FIRM is a potentially useful analysis method 
in other complex situations. 

FIRM and TempleMW work together synergistically; 
the FIRM results are used both to organize the Tem­
pleMW display and to identify the apparently ir­
relevant predictors defining the "noise" variable Xio, and 
then we use the TempleMW display to identify outliers 
and refine the FIRM analysis by rerunning the analysis 
without outliers in the data set. The general and 
particular features of this complex data set are quickly 
and easily identified. 

Supporting Information Available: Method for con­
struction of a V4 rep design and FIRM dendograms (6 pages). 
Ordering information can be found on any current masthead 
page. 
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